Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Brendan Twamley,* O. D. Gupta and Jean'ne M. Shreeve

University Research Office, 114 Morrill Hall, University of Idaho, Moscow, ID 83844-3010, USA

Correspondence e-mail: btwamley@uidaho.edu

Key indicators

Single-crystal X-ray study
$T=213 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.010 \AA$
Disorder in solvent or counterion
R factor $=0.047$
$w R$ factor $=0.116$
Data-to-parameter ratio $=18.1$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

1,7-Dihydro-1,4,7,10-tetraazacyclododecanephosphine oxide iodide

The title compound, $\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{OP}^{+} \cdot \mathrm{I}^{-}$or $\left[\mathrm{H}_{2}\right.$ cyclenPO][I], contains a five-coordinate P atom arranged in a slightly distorted trigonal bipyramid. The asymmetric unit contains half the cyclen moiety of the $\mathrm{H} \sim 2 \sim$ cyclenPO unit and two distinct iodide positions. The full molecule can be symmetry generated around the P atom using the symmetry code $\frac{1}{3}+x-y, \frac{2}{3}-y, \frac{5}{3}-z$. The $\mathrm{P}-\mathrm{N}$ bond length in the equatorial plane is 1.656 (5) \AA and the apical $\mathrm{P}-\mathrm{N}$ interaction is much longer, 1.891 (4) A. The cyclen moieties are linked together via $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds and form a spiral chain along [001]. Crystallographically, there are two distinct anion sites, both in special positions, one of them with partial occupancy. One anion site may participate in an extremely weak hydrogen bond, linking the cyclen spiral chains into a pseudo-hexagonal three-dimensional array.

Comment

Cyclen chemistry is extensive, with 431 hits in the November 2002 release of the Cambridge Structural Database (CSD; Allen, 2002). However, only one cyclen phosphine oxide is described in the database, namely cyclenphosphine oxide dihydrate, (II) (Oget et al., 1999). Compound (II) was first described in a patent (Richman, 1976) and the solution structure elucidated by NMR methods (Richman \& Kubale, 1983). Although other cyclen phosphine chalcogenide derivatives have been synthesized (Oget et al., 1998), no structural information has been reported.

(I)

(II)

Compound (I) is a hydrolytic by-product formed during reactions of cyclenphosphorane (Gupta et al., 1998). The title compound, (I), is similar to (II). (I) is protonated, cationic and charge balanced by an iodide anion (see Fig. 1). The P atom lies on a special position (Wyckoff position e, point symmetry 2) and the other half of the cation is symmetry-generated. The P atom is five-coordinate and forms a slightly distorted trigonal bipyramid (tbp). The equatorial plane atoms [$\mathrm{N} 2, \mathrm{O} 1$, $\mathrm{N} 2^{\mathrm{i}}$ and P 1 ; symmetry code: (i) $\left.\frac{1}{3}+x-y, \frac{2}{3}-y, \frac{5}{3}-z\right]$ are exactly coplanar. The distortion from tbp can be seen in the axial and equatorial $\mathrm{N}-\mathrm{P}-\mathrm{N}$ angles [167.1 (3), 123.4 (4) and 118.3 (2) ${ }^{\circ}$]. The $\mathrm{P}-\mathrm{N}$ distances show that the equatorial N

Received 2 April 2003 Accepted 22 April 2003 Online 30 April 2003

Figure 1
The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level. Only one of the iodide positions is shown.

(a)

(b)

Figure 2
(a) A head-on view of the hydrogen-bonded network of the cyclen units. Ellipsoids are drawn at the 30% probability level. (b) A ball-and-stick side view of the hydrogen bonding between the cyclen units, showing the spiral chain.
atoms are bonded to the phosphorus $\left[\mathrm{P} 1-\mathrm{N} 2\right.$ and $\mathrm{P} 1-\mathrm{N} 2^{\mathrm{i}}=$ 1.656 (5) Å]. The apical $\mathrm{P}-\mathrm{N}$ distances $\left[\mathrm{P} 1-\mathrm{N} 1\right.$ and $\mathrm{P} 1-\mathrm{Ni}^{\mathrm{i}}$ $=1.891(4) \AA$] are longer than that of a single $\mathrm{P}-\mathrm{N}$ bond. They are considerably shorter than the sum of the van der Waals radii $(3.35 \AA)$ and indicate a strong coordination of the central phosphorus by these N atoms. The elongation of the

Figure 3
A ball-and-stick packing diagram of (I). The cell is shown. Very weak $\mathrm{H} \cdots$ I interactions are indicated by dashed lines outlining the pseudohexagonal shape formed by the cyclen chains and one of the anion positions.
apical $\mathrm{P}-\mathrm{N}$ bond in a tbp is expected, and this bond lengthening has been reported previously with a range of $\mathrm{P}-\mathrm{N}_{\text {apical }}$ distances of 1.8 to $2.11 \AA$ [e.g. CSD refcode YAFDUE (Khasnis et al., 1992), LOBYUW (Gupta et al., 1999) and GOCPUJ (Oget at al., 1999)]. Atoms N1 and N1 1^{i} are both protonated and the H atom was located in a difference map. Iodide anions, totalling nine per unit cell for charge balance, are in two crystallographically distinct sites, both in special positions. I1 is located at Wyckoff position b (point symmetry 32) with full occupancy, while $\mathrm{I} 1^{\prime}$ is located at position d (point symmetry 2) with $2 / 3$ occupancy; these occupancy factors are confirmed by free refinement.

The cyclen phosphine oxide moiety is twisted about the $\mathrm{N} 1-\mathrm{P} 1-\mathrm{N} 1^{\mathrm{i}}$ plane. The amido H atoms are oriented to either side of this plane (0.41 and $-0.41 \AA$). This produces a slight helical distortion of the cyclen moiety. This helical distortion can also be seen in bis(borane)cyclenphosphorane (Dupart et al., 1985). The absolute configuration of chiral (I) could not be determined reliably and (I) was refined as a racemic twin.

The extended solid state structure generated by intermolecular interactions presents an interesting picture:
(i) $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding. There are two of these interactions per cyclen moiety, linking the cyclen PO units into a spiral chain that runs parallel to [001]. This is shown in Figs. 2(a) and 2(b). Distances and angles are given in Table 1.
(ii) $\mathrm{C}-\mathrm{H} \cdots \mathrm{I}$ interactions. These 'interactions' should be considered extremely weak or almost non-existent. They are at the furthest limit of reported weak $\mathrm{C}-\mathrm{H} \cdots X$ interactions (Desiraju \& Steiner, 2001). However, they may have an influence on the supramolecular association, by linking the spiral cyclen chains into a pseudo-hexagonal array (three H_{2} cyclen PO^{+}cations and three I^{-}anions) (Fig. 3). The space
between these networked molecules is occupied by the symmetry-related unassociated iodide position. This leaves large voids between the spiral chains, ca $94 \AA^{3}$ in the asymmetric unit.

Experimental

Compound (I) was synthesized as a hydrolytic by-product from reactions of cyclenphosphorane (Gupta et al., 1998). Colorless crystals were obtained from a CHCl_{3} solution, yield 95%. IR $\left(\mathrm{cm}^{-1}, \mathrm{KBr}\right.$ pellet): $3100(w), 2935(v s), 2856(s), 1460(s), 1392(v s), 1232(s), 1141$ (vs), 1088 (vs), 746 (m), 627 (s).

Crystal data

$\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{IN}_{4} \mathrm{OP}$
$M_{r}=344.13$
Trigonal, R32
$a=19.327$ (3) A
$c=10.052$ (2) \AA
$V=3251.7(10) \AA^{3}$
$Z=9$
$D_{x}=1.582 \mathrm{Mg} \mathrm{m}^{-3}$

Mo $K \alpha$ radiation

Cell parameters from 3934 reflections
$\theta=2.3-23.5^{\circ}$
$\mu=2.31 \mathrm{~mm}^{-1}$
$T=213$ (2) K
Parallelepiped, colorless
$0.30 \times 0.20 \times 0.20 \mathrm{~mm}$
Data collection

Burker/Siemens SMART 1K CCD	1324 independent reflections
diffractometer	1260 reflections with $I>2 \sigma(I)$
ω scans	$R_{\text {int }}=0.041$
Absorption correction: multi-scan	$\theta_{\max }=25.4^{\circ}$
$(S A D A B S ;$ Sheldrick, 1999 $)$	$h=-23 \rightarrow 16$
$T_{\min }=0.522, T_{\max }=0.628$	$k=-21 \rightarrow 23$
14029 measured reflections	$l=-12 \rightarrow 11$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.047$
$w R\left(F^{2}\right)=0.117$
$S=1.14$
1324 reflections
73 parameters
H -atom parameters constrained

Table 1

Hydrogen-bonding geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 2-\mathrm{H} 2 B \cdots \mathrm{I} 1$	0.98	3.23	$4.023(6)$	140
$\mathrm{~N} 1-\mathrm{H} 1 \cdots 1^{\text {ii }}$	0.86	1.91	$2.769(5)$	176

Symmetry code: (ii) $\frac{5}{3}-x+y, \frac{4}{3}-x, \frac{1}{3}+z$.

H atoms were positioned geometrically and refined using a riding model, with $U_{\text {iso }}$ values constrained to be $1.2 U_{\text {eq }}$ of the carrier atom. Atom H1 was located in a difference map. The distance was restrained and the $U_{\text {iso }}$ value constrained to be $1.2 U_{\text {eq }}$ of carrier atom N 1 . The structure was refined as a racemic twin.

Data collection: SMART (Bruker, 1997-1998); cell refinement: SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus; program(s) used to solve structure: $X S$ in SHELXTL (Bruker, 1998); program(s) used to refine structure: $X L$ in $S H E L X T L$; molecular graphics: $X P$ in SHELXTL; software used to prepare material for publication: XCIF in SHELXTL.

The Bruker (Siemens) SMART CCD diffraction facility was established at the University of Idaho with the assistance of the NSF-EPSCoR program and the M. J. Murdock Charitable Trust, Vancouver, WA, USA.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Bruker (1997-1998). SMART. Version 5.025. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1998). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1999). SAINT-Plus. Version 6.01. Bruker AXS Inc., Madison, Wisconsin, USA.
Desiraju, G. R. \& Steiner, T. (2001). The Weak Hydrogen Bond In Structural Chemistry and Biology. IUCr Monograph No. 9. Oxford University Press.
Dupart, J.-M., Le Borgne, G., Pace, S. \& Riess, J. G. (1985). J. Am. Chem. Soc. 107, 1202-1205.
Gupta, O. D., Kirchmeier, R. L. \& Shreeve, J. M. (1998). J. Fluorine Chem. 92, 147-151.
Gupta, O. D., Kirchmeier, R. L. \& Shreeve, J. M. (1999). J. Fluorine Chem. 97, 223-228.
Khasnis, D. V., Lattman, M., Siriwardane, U. \& Zhang, H. (1992). Organometallics, 11, 2074-2079.
Oget, N., Chuburu, F., Handel, H. \& Troupet, L. (1999). J. Chem. Res. (S), pp. 526-527.
Oget, N., Yaouanc, J. J. \& Handel, H. (1998). Phosphorus Sulfur Silicon, 133, 229-236.
Richman, J. E. (1976). US Patent No. 3987128.
Richman, J. E. \& Kubale, J. J. (1983). J. Am. Chem. Soc. 105, 749-751.
Sheldrick, G. M. (1999). SADABS. Version 2.01. Bruker AXS Inc., Madison, Wisconsin, USA.

